Minimax Mutual Information Approach for ICA of Complex-Valued Linear Mixtures
نویسندگان
چکیده
Recently, the authors developed the Minimax Mutual Information algorithm for linear ICA of real-valued mixtures, which is based on a density estimate stemming from Jaynes’ maximum entropy principle. Since the entropy estimates result in an approximate upper bound for the actual mutual information of the separated outputs, minimizing this upper bound results in a robust performance and good generalization. In this paper, we extend the mentioned algorithm to complex-valued mixtures. Simulations with artificial data demonstrate that the proposed algorithm outperforms FastICA.
منابع مشابه
Nonlinear Independent Component Analysis By
Independent component analysis is often approached from an information theoretic perspective employing specific sample estimates for the mutual information between the separated outputs. These approximations involve the nonparametric estimation of signal entropies. The common approach involves the estimation of these quantities and adaptation based on these criteria. In contrast, in this paper,...
متن کاملMinimax Mutual Information Approach for Independent Component Analysis
Minimum output mutual information is regarded as a natural criterion for independent component analysis (ICA) and is used as the performance measure in many ICA algorithms. Two common approaches in information-theoretic ICA algorithms are minimum mutual information and maximum output entropy approaches. In the former approach, we substitute some form of probability density function (pdf) estima...
متن کاملFlexible Ica in Complex and Nonlinear Environment by an Mutual Information Approach
This paper introduces an Independent Component Analysis (ICA) approach to the separation of nonlinear mixtures in the complex domain. Source separation is performed by the minimization of output mutual information (MMI approach). Nonlinear complex functions involved in the processing are realized by the so called “splitting functions” which work on the real and the imaginary part of the signal ...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004